Bayerisches Zentrum für Angewandte Energieforschung e.V.

Thermal Conductivity of PCM

Introduction

Hans-Peter Ebert

ZAE BAYERN Bayerisches Zentrum

für Angewandte

Energieforschung

© ZAE Bayern

OVERVIEW

- Motivitation
- Thermal conductivity · thermal diffusivity
- Measurement methods
- Final remarks

HEAT TRANSFER

Jean Baptiste Joseph Fourier (1768 - 1830)

Fourier's law defines the thermal conductivity λ :

 T_{H}

$$\vec{q} = -\lambda \nabla T$$

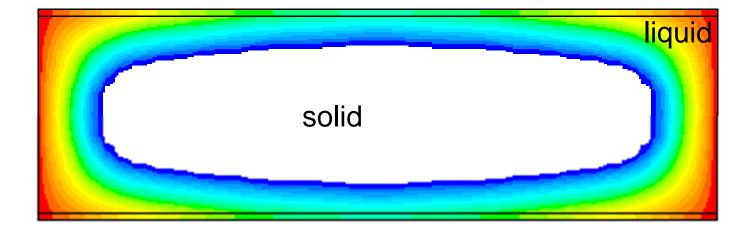
isotropic, homogeneous material heat flux

Thermal conductivity λ is a material property!

$$[\lambda] = \frac{W}{m^2} \cdot \frac{m}{K} = \frac{W}{m \cdot K}$$

WHY THERMAL CONDUCTIVITY HAS TO BE KNOWN?

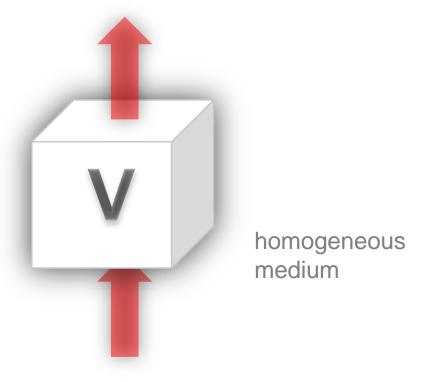
• input data for simulations



• product comparison (product data sheets)

In all cases you need reliable thermal conductivity data!

Energy balance of a volume V with surface S between the times t_1 and t_2



$$\iint_{t_1 S} \lambda(\vec{x}) \nabla T d\vec{f} dt + \iint_{t_1 V} \Phi(\vec{x}, t) d^3 \vec{x} dt = \int_{V} c(\vec{x}) \rho(\vec{x}) [T(\vec{x}, t_2) - T(\vec{x}, t_1)] d^3 \vec{x}$$

net heat flow via the surface S

heat source or sink

increase of the internal energy due to a increase of temperature

 Φ = heat source (z.B. phase change, chemical reaction, radiative heat transfer)

- $\rho = density$
- c = specific heat
- λ = thermal conductivity
- T = temperature

$$\iint_{t_1S}^{t_2} \lambda(\vec{x}) \nabla T d\vec{f} dt + \iint_{t_1V}^{t_2} \Phi(\vec{x}, t) d^3 \vec{x} dt = \int_V c(\vec{x}) \rho(\vec{x}) [T(\vec{x}, t_2) - T(\vec{x}, t_1)] d^3 \vec{x}$$
$$\int_S \lambda(\vec{x}) \nabla T d\vec{f} = \int_V \nabla(\lambda(\vec{x}) \nabla T) d^3 \vec{x}$$

$$\left[T(\vec{x},t_2) - T(\vec{x},t_1)\right] = \int_{t_1}^{t_2} \frac{\partial T}{\partial t} dt$$

© ZAE Bayern • THC PCM Workshop • H.-P. Ebert • 11. Nov 2015

J S

$$\int_{t_1}^{t_2} \int_{V} \left\{ \nabla(\lambda(\vec{x}) \nabla T(\vec{x}, t)) + \phi(\vec{x}, t) = \rho(\vec{x}) c(\vec{x}) \frac{\partial T(\vec{x}, t)}{\partial t} \right\} d^3 \vec{x} dt$$

General Equation of Heat Transfer (Parabolic partial differential equation)

$$\nabla(\lambda(\vec{x})\nabla T(\vec{x},t)) + \phi(\vec{x},t) = \rho(\vec{x})c(\vec{x})\frac{\partial T(\vec{x},t)}{\partial t}$$

SIMPLIFIED ONE-DIMENSIONAL EQUATION OF HEAT TRANSFER

 $\frac{\partial}{\partial x}(\lambda(x)\frac{\partial}{\partial x}T(x,t)) + \phi(x,t) = \rho(x)c(x)\frac{\partial T(x,t)}{\partial t}$

- no sources of heat
- constant thermal conductivity, density and specific heat

$$\frac{\partial^2}{\partial x^2} T(x,t) = \frac{\rho \cdot c}{\lambda} \frac{\partial T(x,t)}{\partial t}$$
$$\frac{\partial^2}{\partial x^2} T(x,t) = \frac{1}{\alpha} \frac{\partial T(x,t)}{\partial t}$$

 α : thermal diffusivity

SIMPLIFIED ONE-DIMENSIONAL EQUATION OF HEAT TRANSFER

$$\frac{\partial^2}{\partial x^2} T(x,t) = \frac{\rho \cdot c}{\lambda} \frac{\partial T(x,t)}{\partial t}$$

Stationary heat transfer:

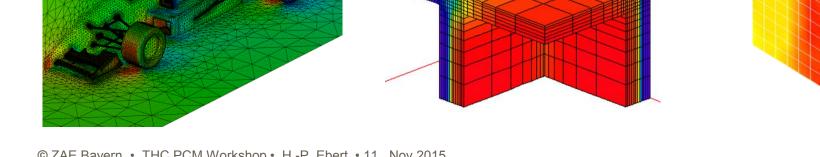
$$\frac{\partial^2}{\partial x^2} T(x) = 0$$
$$\frac{\partial}{\partial x} T(x) = const. = -\frac{q}{\lambda}$$

methods

$$\rho \cdot \mathbf{c}_{p} \cdot \frac{\partial T}{\partial t} = \lambda \cdot \frac{\partial^{2} T}{\partial x^{2}} \quad \Rightarrow \quad \rho \cdot \mathbf{c}_{p} \cdot \frac{T_{i}^{n+1} - T_{i}^{n}}{\Delta t} = \lambda \cdot \frac{T_{i+1}^{n} - 2 \cdot T_{i}^{n} + T_{i-1}^{n}}{(\Delta x)^{2}}$$

Common methods: finite-difference-, finite-volume-method, analytical

In all cases Equation of Heat Transfer is the underlying "working equation" and conduction effects are separated from heat storage effects.



PRINCIPLES OF THERMAL SIMULATIONS

HOW WE COULD DETERMINE THERMAL CONDUCTIVITY?

Fourier's law

$$\vec{q} = -\lambda \nabla T$$

Prerequisites:

- stationary conditions
- determination of the temperature gradient
- determination of the heat flow

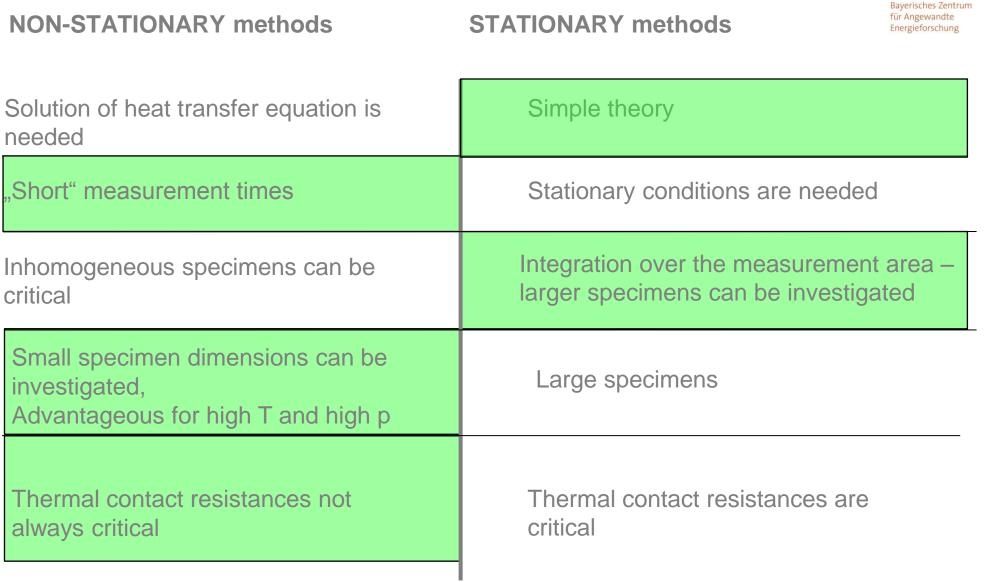
Equation of heat transfer

$$\lambda \Delta T(\vec{x}, t) = \rho \cdot c \frac{\partial T(\vec{x}, t)}{\partial t}$$

Prerequisites:

- instationary conditions
- defined boundary and initial conditions
- known solution of the equation of heat transfer

COMPARISON OF STATIONARY AND NON-STATIONARY METHODS



ZAE BAYERN

- It is no problem if the experiment is conducted far below the melting point > determination of $\lambda_{s}.$
- It is no problem if the experiment is conducted far above the melting point > determination of λ_{l} .
- The thermal conductivity of the liquid phase is lower than the thermal conductivity of the solid phase.
- In the case that two phases exist within the specimen during a thermal conductivity measurement the results have to be carfully discussed.

ROUND ROBIN TEST

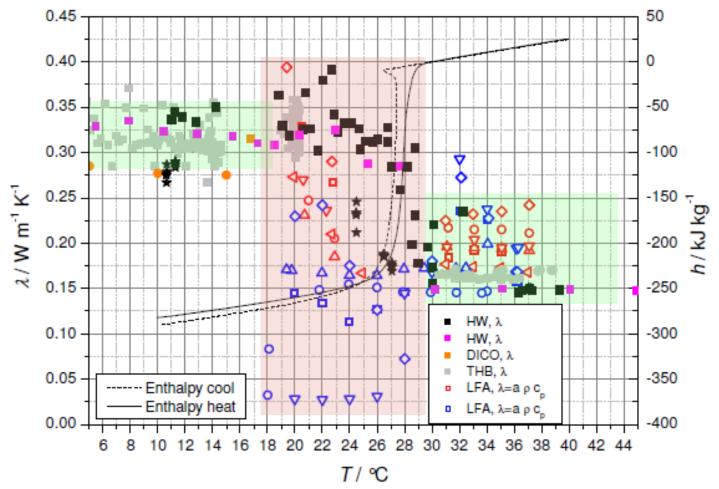
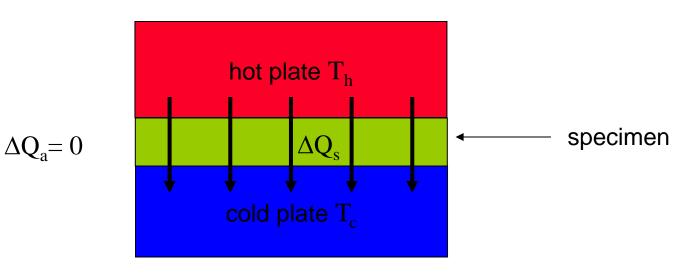


Figure 1: Thermal conductivity of n-octadecane measured with different measurement methods

STATIONARY GUARDED HOT PLATE METHOD



$$\Delta Q = \Lambda \cdot A \cdot (T_h - T_c) \cdot \Delta t$$

with: measurement area A , thermal conductivity λ und thermal conductance Λ

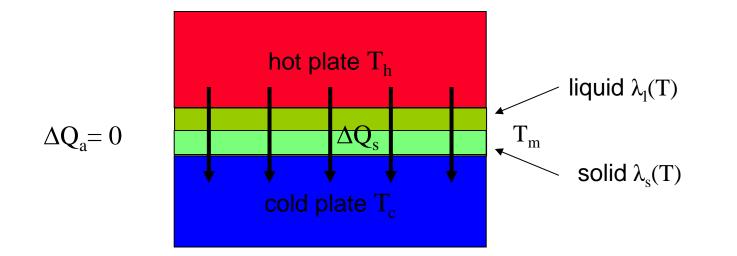
$$\Lambda = \frac{\lambda}{d}$$

with: d = specimen thickness

© ZAE Bayern • THC PCM Workshop • H.-P. Ebert • 11. Nov 2015

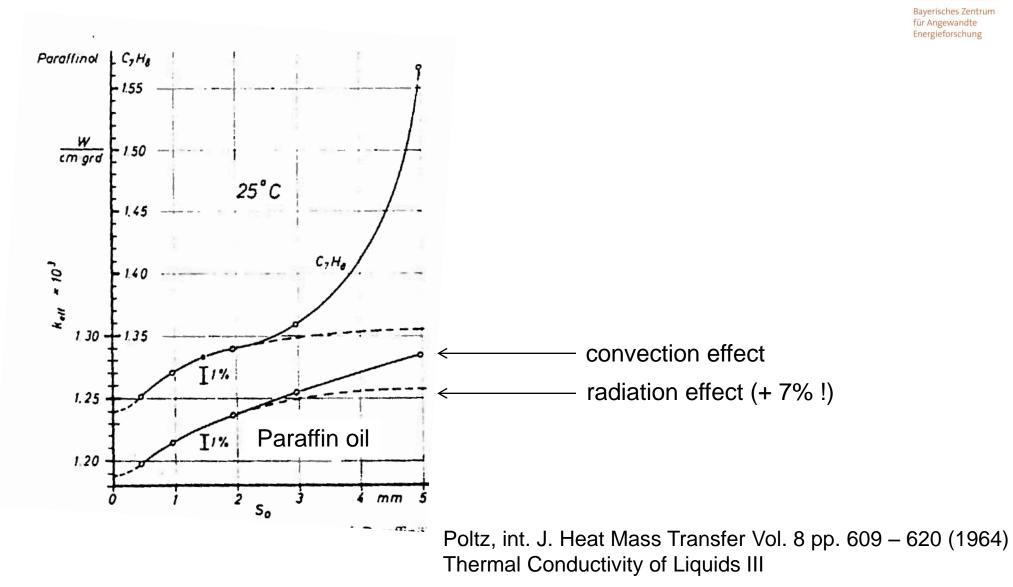
STATIONARY GUARDED HOT PLATE METHOD

 $T_h > T_m > T_c$



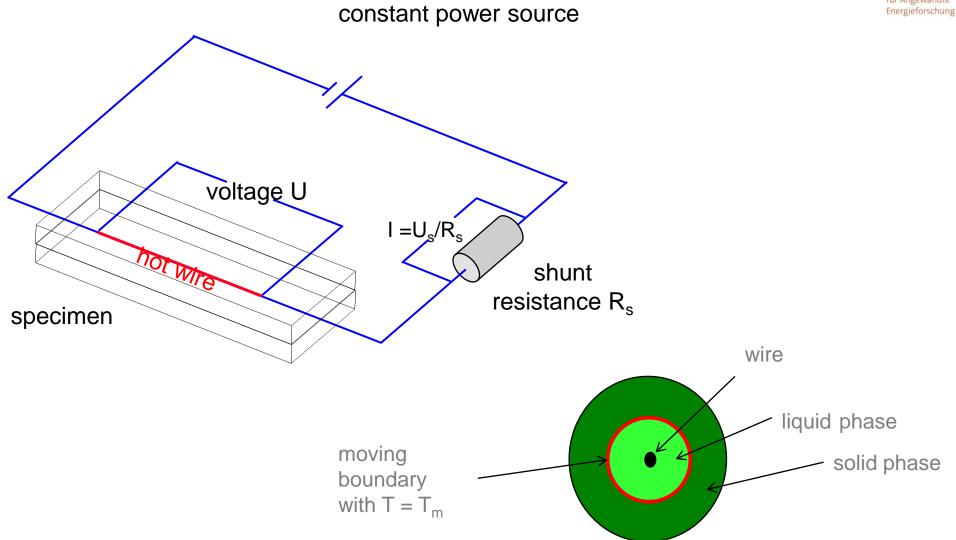
STATIONARY GUARDED HOT PLATE METHOD

Some remarks about radiative transfer within paraffins

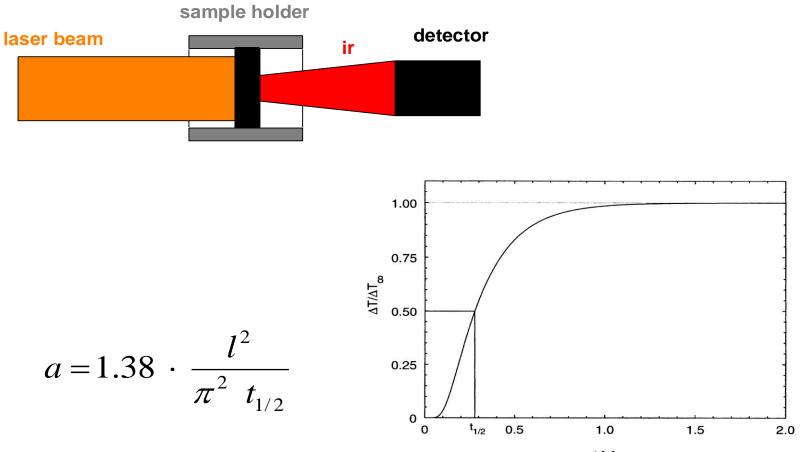


ZAE BAYERN

DYNAMIC HOT-WIRE METHOD



 $\lambda(T) = a(T) \cdot \rho(T) \cdot c_{\rho}(T)$



© ZAE Bayern • THC PCM Workshop • H.-P. Ebert • 11. Nov 2010

t [s]

What is the result of an evaluation procedure if the underlying working equation meets not the experimental reality?

Facts:

- The working equation considers not the phase transition (in the most cases).
- Fitting algorithms will deliver a best fit solution in respect to the laws of mathematic not in respect to the physics.

